Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 40(1)2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38224549

RESUMO

SUMMARY: Method development for the analysis of cell-free DNA (cfDNA) sequencing data is impeded by limited data sharing due to the strict control of sensitive genomic data. An existing solution for facilitating data sharing removes nucleotide-level information from raw cfDNA sequencing data, keeping alignment coordinates only. This simplified format can be publicly shared and would, theoretically, suffice for common functional analyses of cfDNA data. However, current bioinformatics software requires nucleotide-level information and cannot process the simplified format. We present Fragmentstein, a command-line tool for converting non-sensitive cfDNA-fragmentation data into alignment mapping (BAM) files. Fragmentstein complements fragment coordinates with sequence information from a reference genome to reconstruct BAM files. We demonstrate the utility of Fragmentstein by showing the feasibility of copy number variant (CNV), nucleosome occupancy, and fragment length analyses from non-sensitive fragmentation data. AVAILABILITY AND IMPLEMENTATION: Implemented in bash, Fragmentstein is available at https://github.com/uzh-dqbm-cmi/fragmentstein, licensed under GNU GPLv3.


Assuntos
Ácidos Nucleicos Livres , Software , Genômica , Genoma , Nucleotídeos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Bioinformatics ; 38(24): 5454-5456, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36355469

RESUMO

SUMMARY: Recent studies suggest that the loop extrusion activity of Structural Maintenance of Chromosomes complexes is central to proper organization of genomes in vivo. Polymer physics-based modeling of chromosome structure has been instrumental to assess which structures such extrusion can create. Only few laboratories however have the technical and computational expertise to create in silico models combining dynamic features of chromatin and loop extruders. Here, we present 3DPolyS-LE, a self-contained, easy to use modeling and simulation framework allowing non-specialists to ask how specific properties of loop extruders and boundary elements impact on 3D chromosome structure. 3DPolyS-LE also provides algorithms to compare predictions with experimental Hi-C data. AVAILABILITY AND IMPLEMENTATION: Software available at https://gitlab.com/togop/3DPolyS-LE; implemented in Python and Fortran 2003 and supported on any Unix-based operating system (Linux and Mac OS). SUPPLEMENTARY INFORMATION: Supplementary information are available at Bioinformatics online.


Assuntos
Cromatina , Cromossomos , Simulação por Computador , Software , Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...